Relativistic screw: Difference between revisions

From Spacetime Geometric Algebra
Jump to navigation Jump to search
(Created page with "A relativistic screw $$\mathbf Q$$ is given by :$$\mathbf Q(2\tau) = \exp_\unicode{x27C7}[\gamma\tau(\dot\delta\,\mathbf e_0 + \dot\phi{\large\unicode{x1D7D9}}) \mathbin{\unicode{x27C7}} \boldsymbol l - \gamma c\tau\,\mathbf e_{321}]$$ , where $$c$$ is the speed of light and $$\gamma = dt/d\tau$$. The operator $$\mathbf Q$$ transforms a position $$\mathbf r$$ (or any other quantity) through the sandwich product :$$\mathbf r' = \mathbf Q \mathbin{\unicode{x27C7}}...")
 
No edit summary
Line 1: Line 1:
A relativistic screw $$\mathbf Q$$ is given by
A relativistic screw $$\mathbf Q$$ about a line $$\boldsymbol l$$ is given by


:$$\mathbf Q(2\tau) = \exp_\unicode{x27C7}[\gamma\tau(\dot\delta\,\mathbf e_0 + \dot\phi{\large\unicode{x1D7D9}}) \mathbin{\unicode{x27C7}} \boldsymbol l - \gamma c\tau\,\mathbf e_{321}]$$ ,
:$$\mathbf Q(2\tau) = \exp_\unicode{x27C7}[\gamma\tau(\dot\delta \mathbf e_0 + \dot\phi{\large\unicode{x1D7D9}}) \mathbin{\unicode{x27C7}} \boldsymbol l - \gamma c\tau\,\mathbf e_{321}]$$ ,


where $$c$$ is the speed of light and $$\gamma = dt/d\tau$$.
where $$c$$ is the speed of light, $$\tau$$ is proper time, and $$\gamma = dt/d\tau$$. The rate of rotation about the line is specified by $$\dot\phi$$, and the rate of translation along the line is specified by $$\dot\delta$$.


The operator $$\mathbf Q$$ transforms a [[position]] $$\mathbf r$$ (or any other quantity) through the sandwich product
The operator $$\mathbf Q$$ transforms a [[position]] $$\mathbf r$$ (or any other quantity) through the sandwich product

Revision as of 10:03, 24 November 2024

A relativistic screw $$\mathbf Q$$ about a line $$\boldsymbol l$$ is given by

$$\mathbf Q(2\tau) = \exp_\unicode{x27C7}[\gamma\tau(\dot\delta \mathbf e_0 + \dot\phi{\large\unicode{x1D7D9}}) \mathbin{\unicode{x27C7}} \boldsymbol l - \gamma c\tau\,\mathbf e_{321}]$$ ,

where $$c$$ is the speed of light, $$\tau$$ is proper time, and $$\gamma = dt/d\tau$$. The rate of rotation about the line is specified by $$\dot\phi$$, and the rate of translation along the line is specified by $$\dot\delta$$.

The operator $$\mathbf Q$$ transforms a position $$\mathbf r$$ (or any other quantity) through the sandwich product

$$\mathbf r' = \mathbf Q \mathbin{\unicode{x27C7}} \mathbf r \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{Q}}}$$.

See Also